Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action.

نویسندگان

  • Masaru Ishii
  • Satoru Fujita
  • Mitsuhiko Yamada
  • Yukio Hosaka
  • Yoshihisa Kurachi
چکیده

RGS (regulators of G-protein signalling) are a diverse group of proteins, which accelerate intrinsic GTP hydrolysis on heterotrimeric G-protein a subunits. They are involved in the control of a physiological behaviour known as 'relaxation' of G-protein-gated K+ channels in cardiac myocytes. The GTPase-accelerating activity of cardiac RGS proteins, such as RGS4, is inhibited by PtdIns(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) and this inhibition is cancelled by Ca2+/calmodulin (CaM) formed during membrane depolarization. G-protein-gated K+ channel activity decreases on depolarization owing to the facilitation of GTPase-activating protein activity by RGS proteins and vice versa on hyperpolarization. The molecular mechanism responsible for this reciprocal control of RGS action by PtdIns(3,4,5)P3 and Ca2+/CaM, however, has not been fully elucidated. Using lipid-protein co-sedimentation assay and surface plasmon resonance measurements, we show in the present study that the control of the GTPase-accelerating activity of the RGS4 protein is achieved through the competitive binding of PtdIns(3,4,5)P3 and Ca2+/CaM within its RGS domain. Competitive binding occurs exclusively within the RGS domain and involves a cluster of positively charged residues located on the surface opposite to the Ga interaction site. In the RGS proteins conserving these residues, the reciprocal regulation by PtdIns(3,4,5)P3 and Ca2+/CaM may be important for their physiological regulation of G-protein signalling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel.

Regulators of G protein signaling (RGS) accelerate intrinsic GTP hydrolysis on alpha subunits of trimeric G proteins and play crucial roles in the physiological regulation of G protein-mediated cell signaling. The control mechanisms of the action of RGS proteins per se are poorly clarified, however. We recently showed a physiological mode of action of a RGS protein in cardiac myocytes. The volt...

متن کامل

Analysis of chimeric RGS proteins in yeast for the functional evaluation of protein domains and their potential use in drug target validation.

For the identification of regulators of G-protein signaling (RGS) modulators, previously, we developed a luciferase based yeast pheromone response (YPhR) assay to functionally investigate RGS4 (K.H. Young, Y. Wang, C. Bender, S. Ajit, F. Ramirez, A. Gilbert, B.W. Nieuwenhuijsen, in: D.P. Siderovski (Ed.), Meth. Enzymol. 389 Regulators of G_protein Signaling, Part A, 2004.). To extend the divers...

متن کامل

Novel Activity of RGS14 on GoR and GiR Nucleotide Binding and Hydrolysis Distinct from Its RGS Domain and GDI Activity†

The bifunctional protein RGS14 is both a GTPase activating protein (GAP) for GiR and GoR and a guanine nucleotide dissociation inhibitor (GDI) for GiR. This GDI activity is isolated to a region of the protein distinct from the RGS domain that contains an additional G protein-binding domain (RBD/ GL). Here, we report that RGS14 missing its RGS domain (R14-RBD/GL) binds directly to Go and Gi to m...

متن کامل

The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling.

Normal cardiovascular development and physiology depend in part upon signalling through G-protein-coupled receptors (GPCRs), such as the angiotensin II type 1 (AT(1)) receptor, sphingosine 1-phosphate (S1P) receptors and endothelin-1 (ET-1) receptor. Since regulator of G-protein signalling (RGS) proteins function as GTPase-activating proteins for the G alpha subunit of heterotrimeric G-proteins...

متن کامل

Homer 2 tunes G protein–coupled receptors stimulus intensity by regulating RGS proteins and PLCβ GAP activities

Homers are scaffolding proteins that bind G protein-coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels. However, their role in Ca2+ signaling in vivo is not known. Characterization of Ca2+ signaling in pancreatic acinar cells from Homer2-/- and Homer3-/- mice showed that Homer 3 has no discernible role in Ca2+ signaling in these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 385 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005